Z oczywistych, wymienianych tu względów, na takie wyposażenie nie stać większości producentów lub dystrybutorów sprzętu. Stąd przy coraz powszechniejszej dostępności względnie tanich analizatorów widma pojawiła się koncepcja badań przedcertyfikacyjnych. Okazuje się, że namiastkę prawdziwej komory bezodbiciowej może mieć prawie każdy.
Pomiary emisji z użyciem komory TEM
Konstrukcję komory TEM opisano w pierwszej części artykułu, zamieszczonej w EP7/2016. Obecnie skupimy się na pomiarach z jej użyciem.
Opisywana komora TBTC1 ma orientacyjne wymiary 360 mm×200 mm, przy czym jednorodne pole elektromagnetyczne jest wytwarzane na powierzchni 200 mm×200 mm. Komora jest elementem 2-portowym. Do jednego portu jest dołączany terminator 50 V/25 W, z drugiego natomiast jest odprowadzany sygnał do analizatora DSA815 poprzez eliminator składowej stałej. Sygnał ten jest pobierany z linii paskowej pełniącej funkcję anteny. Jest ona zamontowana fabrycznie w środkowej przegrodzie komory. Badany element należy umieścić na dolnej półce. Cała komora powinna być ustawiona na blaszanej podstawie o wymiarach ok. 1 m×1 m. Blacha powinna być uziemiona.
Badane urządzenie (DUT – Device Under Test) musi być oczywiście włączone podczas pomiarów, należy więc zadbać o doprowadzenie odpowiedniego źródła zasilania. W większości przypadków wymagane będzie ustawienie zerowego tłumienia wbudowanego w analizatorze DSA815 tłumika. Co więcej, do prawidłowego wykonania pomiaru może być potrzebny dodatkowy przedwzmacniacz zwiększający zakres dynamiki. Rozdzielczość pomiaru (RBW) zależy od standardu, według którego badane jest urządzenie. Zwykle jest to 9 kHz. Pomiar wykonuje się z włączoną opcją Max Hold. W celu lokalizacji przypadkowych sygnałów emitowanych przez DUT należy zapewnić kilkakrotne skanowanie widma. Istotne jest również włączenie filtru EMI w analizatorze. Wiąże się to z zakupem odpowiedniej opcji rozszerzającej firmware przyrządu. Pomiar ze standardowym filtrem nie da dobrych wyników.
Jedna z opcji analizatora DS815 określająca typ detekcji pozwala na włączenie detektora Quasi Peak. Eliminuje on widoczne w widmie „szpilki” pozornie przekraczające dozwolone poziomy, gdyż mierzy ważoną wartość szczytową obwiedni sygnału. Waga sygnału zależy od czasu jego trwania i częstości powtarzania. Sygnały pojawiające się rzadko będą miały mniejszą wartość pseudoszczytową niż sygnały występujące często. Wadą takiego pomiaru jest jednak znaczne wydłużenie czasu przemiatania widma. Na przykład pomiar w zakresie od 9 kHz do 300 MHz z rozdzielczością 9 kHz trwa 25 minut. Z detektora tego typu warto jednak korzystać, gdyż jest on wykorzystywany standardowo w pomiarach certyfikacyjnych.
Pomiary odporności na zaburzenia EMI z wykorzystaniem komory TEM
W tym pomiarze działania są odwrotne niż w poprzednim. Badane urządzenie jest umieszczone w komorze TEM najlepiej tak, aby elektronika znajdowała się w równych odległościach od dna i przegrody. Do jednego z portów komory, tak jak poprzednio powinien być dołączony 50-omowy terminator. Do drugiego portu należy dołączyć generator sygnałowy, ewentualnie przez dodatkowy wzmacniacz mocy. Generator powinien wytwarzać sygnał radiowy w.cz. (RF) z 80-procentową modulacją amplitudy. Można uznać, że natężenie pola wewnątrz komory jest jednorodne. Chociaż teoretycznie opisuje się je równaniem E=U/d, gdzie U jest napięciem skutecznym RMS sygnału przyłożonego do komory, a d jest odległością między dnem a przegrodą, w praktyce należy wprowadzić dodatkowy czynnik korekcyjny. Ostatecznie pole jest opisane równaniem: . Zależność natężenia pola uzyskiwanego w komorze od mocy sygnału RF przyłożonego do portu wejściowego przedstawiono w tabeli 1.
W pomiarach można stosować sprzęgacz kierunkowy wstawiany pomiędzy wzmacniacz mocy i komorę. Umożliwi to pomiar mocy dostarczanej i odbijanej. Trzeba ponadto uwzględniać dosyć duże rozbieżności wymaganego natężenia pola określanego przez poszczególne normy. Należy więc zapewnić generowanie pól o natężeniu od 10 V/m do 400 V/m (tabela 1).
Pomiary emisji z zastosowaniem sond bliskiego pola
Pomiar w komorze TEM w mniejszym lub większym stopniu odwzorowuje ewentualne wyniki, jakich można się spodziewać po pomiarach w komorze bezodbiciowej laboratorium certyfikacyjnego, gdyby urządzenie trafiło do badań w takim stanie, w jakim jest aktualnie. Ewentualne przekroczenia poziomów widma uwidocznione w pomiarach w komorze TEM powinny być powodem do zastanowienia się nad dokonaniem zmian konstrukcyjnych urządzenia. Pierwszym krokiem powinna być lokalizacja „wycieków” za pomocą sond bliskiego pola. Na tej podstawie konstruktor uzyska najdokładniejszą informację o miejscach, w których generowane są zaburzenia EMI. Oczywiście nie rozwiązuje to problemu, gdyż trzeba jeszcze zdecydować o środkach zaradczych, jakie należy podjąć w celu eliminacji szkodliwych zaburzeń. Może to być na przykład poprawa ekranowania, dołożenie terminatorów na końcach wrażliwych ścieżek, optymalizacja powierzchni masy oblewającej ścieżki, zadbanie o rozdzielenie masy sygnałowej od zasilającej, skrócenie połączeń czy w ostateczności gruntowne przeprojektowanie całej PCB.
Pomiary prowadzi się z użyciem sond bliskiego pola. Przykładem są opisane w pierwszej części artykułu sondy Rigola. Firma ta oferuje komplet składający się z 4 takich sond. Do pomiarów można wykorzystywać również sondy innych producentów, np. Tekboksa. Sondy Rigola są dołączane bezpośrednio do analizatora, natomiast sondy Tekboksa wymagają dodatkowego, znajdującego się w zestawie, szerokopasmowego wzmacniacza zasilanego z gniazda USB. Można korzystać z gniazda dostępnego na płycie czołowej analizatora. Sondy firmowe nie są bardzo drogie, ale gdyby ktoś szukał minimalizacji kosztów, w ostateczności może takie sondy wykonać nawet samodzielnie. Wykorzystuje się do tego krótki odcinek kabla koncentrycznego. Trudno jednak spodziewać się, aby tak zrobione narzędzie miało porównywalne parametry z wyrobami fabrycznymi.
W pomiarach z użyciem sond bliskiego pola nie korzysta się z detektora Quasi Peak. Byłoby to raczej bezcelowe i trudne w realizacji choćby z uwagi na bardzo długi czas przemiatania widma. Celem tego pomiaru jest szybka lokalizacja źródeł emisji. Należy więc wybierać raczej opcję ClearWrite. Na fotografii 12 przedstawiono przykładowe wyniki pomiaru opisywanego wcześniej urządzenia za pomocą sond bliskiego pola z detektorem pracującym w trybie ClearWrite. W pomiarze zastosowano zarówno sondę pola E, jak i sondy pola H. Rozmiary pętli sond H decydują o rozdzielczości. Sonda z największą pętlą umożliwia szybką lokalizację obszarów, w których dochodzi do emisji zaburzeń, natomiast sonda z małym oczkiem może być wykorzystywana do emisji występujących w bardzo dokładnie określonych miejscach. Sondą tą można lokalizować „wycieki” niemal na pojedynczych wyprowadzeniach układów scalonych.
Przed przystąpieniem do pomiarów emisji przewodzonej należy zwrócić uwagę na odpowiednie przygotowanie stanowiska pomiarowego. Trzeba zdawać sobie sprawę, że w realiach konstruktora urządzenia trudno będzie spełnić wszystkie ostre wymagania, które są zachowane w laboratorium certyfikacyjnym. Skoro jednak konstruktor decyduje się na badania wstępne prowadzone we własnym zakresie warto, aby pokusił się na zorganizowanie stanowiska pomiarowego w jak największym stopniu spełniającego stosowne kryteria.
Pomiar emisji przewodzonej prowadzi się w zakresie częstotliwości od 9 kHz do 30 MHz z użyciem dwóch przyrządów. Jednym z nich jest LISN – stabilizator impedancji sieci (tzw. sztuczna sieć). Urządzenie to powinno być bardzo dokładnie uziemione, do czego służy stalowa taśma wychodząca z tylnej ścianki przyrządu. Jest ona przykręcana do płaszczyzny uziemiającej z zachowaniem jak najmniejszej oporności połączenia (fotografia 14). Zadaniem LISN jest separacja zakłóceń przedostających się wzajemnie pomiędzy siecią zasilającą 230 V i urządzeniem badanym od zakłóceń przewodzonych, generowanych przez badane urządzenie. W niektórych przypadkach wskazane może być włączenie dodatkowego transformatora separującego. Sam pomiar zaburzeń jest natomiast realizowany najczęściej przez analizator widma, np. opisany w poprzednich pomiarach DS815.
Ostateczną ocenę wyników można przerzucić na analizator przez uaktywnienie testu Pass/Fail. Wcześniej definiuje się linię łamaną określająca limity poziomów dla poszczególnych zakresów częstotliwości. Oprogramowanie firmowe analizatora DS815 zawiera przeznaczony do tego celu prosty edytor.
Niewątpliwie konstruktorzy i producenci mają dylemat z ewentualnym podjęciem decyzji o zakupie przyrządów wykorzystywanych do badań przedcertyfikacyjnych. Jednorazowy, sumaryczny wydatek (analizator, komplet sond bliskiego pola, komora TEM, stabilizator impedancji sieci LISN) nie jest mały, ale jak widać na podstawie przedstawionych rozwiązań może przyczynić się do ponoszenia znacznie większych kosztów związanych z nieudanymi pomiarami w laboratorium certyfikacyjnym.
Jarosław Doliński, EP
Dodatkowe informacje:
NDN-Zbigniew Daniluk
ul. Janowskiego 15, 02-784 Warszawa
tel. 22-644-42-50, 22-641-15-47
tel./faks 22-641-61-96
ndn@ndn.com.pl, www.ndn.com.pl