Obrazowanie termiczne może przerwać łańcuch infekcji

Obrazowanie termiczne może przerwać łańcuch infekcji
Pobierz PDF Download icon

Pandemia koronawirusa wyraźnie pokazała całemu światu, ile szkód może uczynić wysoce zaraźliwy wirus. Turyści i podróżni niechcący przyczynili się do rozprzestrzeniania choroby. Wykrywanie osób zarażonych po dotarciu na lotnisko jest kluczowe w przerwaniu potencjalnego łańcucha infekcji. W tym aspekcie kamery do obrazowania termicznego mogą mieć duże znaczenie. Silniki FAULHABER pomagają takim kamerom dostarczać precyzyjne obrazy i pomiary w ciągu ułamków sekund.

Pomysł masowego monitorowania temperatury nie jest nowy. Jego wdrożenie i zwiększone wykorzystanie zostało wymuszone przez lokalne epidemie powodowane przez wirusy SARS, MERS i Eboli. W obliczu poważnych zagrożeń dla zdrowia, powodowanych przez te wirusy, niektóre kraje zaczęły stosować skanowanie termiczne na lotniskach i w innych punktach wjazdu do kraju wiele lat temu, aby przynajmniej spowolnić rozprzestrzenianie się chorób. W wyniku pandemii COVID-19 ta metoda jest wdrażana na całym świecie. Gorączka jest typowym objawem choroby zakaźnej. Nawet jeśli podwyższona temperatura nie jest spowodowana przez koronawirusa, wskazuje, że konieczne jest dokładniejsze badanie. Jeśli podróżny ma wysoką temperaturę, możliwe jest przeprowadzenie dokładnych testów i zastosowanie natychmiastowych środków ostrożności.

Szybkie i bezkontaktowe

Główną zaletą pomiaru temperatury przy użyciu obrazowania termicznego jest możliwość monitorowania masowego. Procedura jest bezkontaktowa, zajmuje kilka sekund i może być zautomatyzowana. Oznacza to, że może być stosowana na lotniskach, granicach lub innych miejscach będących „śluzami” bez znaczącego ograniczania swobody przemieszczania się lub wymuszania niewygodnych procedur dla wielu osób.

Taką metodę zastosowano, na przykład w Korei Południowej podczas wyborów parlamentarnych odbywających się 15 kwietnia 2020 roku. Temperatura ciała każdego z głosujących była mierzona przed wejściem do komisji wyborczej. Może to być jeden z powodów, dlaczego ten kraj zdołał opanować pandemię w sposób wyraźnie lepszy od reszty świata.

Wewnętrzny kącik oka jest najlepszym miejscem na twarzy człowieka do szybkiego i względnie niezawodnego pomiaru temperatury. W przeciwieństwie do czoła, które może znacząco się ochłodzić pod wpływem pocenia, temperatura w kąciku oka jest wyjątkowo stabilna. Można ją określić, używając promieniowania podczerwonego emitowanego przez powierzchnię ciała.

Rysunek 1. Wygląd czujnika (matrycy) do obrazowania termicznego jest podobny do matrycy światłoczułej aparatu czy kamery

Większość kamer do obrazowania termicznego przechwytuje to promieniowanie w podobny sposób jak zwykłe kamery cyfrowe używające czujnika obrazu o rozdzielczości do miliona pikseli (rysunek 1). Każdy piksel jest niewielkim bolometrem, odbiornikiem termicznym mierzącym kilka mikrometrów kwadratowych. Promieniowanie termiczne potrzebuje mniej niż 10 milisekund do nagrzania bolometru o grubości 150 nanometrów o jedną piątą wartości różnicy temperatury pomiędzy temperaturą obiektu a temperaturą bolometru. Suma tych wartości używana jest do obliczenia profilu temperatury przechwyconej powierzchni. Po zaprezentowaniu w formie wizualnej powstaje obraz termiczny o znajomych odcieniach – im jaśniejszy kolor, tym wyższa temperatura (rysunek 2).

Rysunek 2. Obrazowanie termiczne polega na nadaniu odpowiednich barw obiektom o różnych temperaturach

Piksele termiczne i studnia kwantowa

Poza bolometrem istnieją inne metody bezkontaktowego i optycznego pomiaru temperatury. Na przykład niektóre rodzaje czujników wykrywają długość fali promieniowania podczerwonego i używają tej wartości do określenia temperatury. Bolometry i czujniki wykrywające długość fali są stosowane nie tylko do klinicznego pomiaru temperatury ludzkiego ciała. Innym znanym zastosowaniem jest wyszukiwanie wycieków temperatury w izolacji budynków. Kolorowy obraz termiczny natychmiast wskazuje miejsce, gdzie dochodzi do utraty ciepła – lub zimna w przypadku budynków klimatyzowanych (rysunek 3).

Rysunek 3. Obrazowanie termiczne jest też stosowane do kontroli izolacji termicznej budynków

Mniej znanym, lecz szeroko używanym zastosowaniem termografii jest kontrola jakości. Niezależnie od tego, czy materiałem jest metal, tworzywo sztuczne, czy szkło – precyzyjnie określona temperatura podczas obróbki termicznej często jest decydującym czynnikiem w określaniu jakości produktu. Dlatego procesy takie, jak walcowanie na gorąco, laminowanie lub hartowanie szkła są często monitorowane przy użyciu kamer do obrazowania termicznego. W przypadku ogniw słonecznych termografia ujawnia strukturę uszkodzeń, wskazując „gorące punkty” o niskiej wydajności. Termografia odgrywa kluczową rolę w technologii bezpieczeństwa. Skan termiczny może np. umożliwić wykrycie przegrzanych elementów na długo przed osiągnięciem stanu krytycznego.

W badaniach atmosfery i przestrzeni kosmicznej stosowana jest całkowicie inna metoda: fotodetektor podczerwieni w studni kwantowej (QWIP). Składa się z naprzemiennych warstw ekstremalnie cienkich półprzewodników i wykorzystuje efekt kwantowy. Warstwy ograniczają stany kwantowo-mechaniczne, które cząstka może tam przyjąć. Napływające fale podczerwieni wpływają na stany, co pozwala na uzyskanie przydatnych obrazów. Obrazy charakteryzują się ekstremalnie wysoką rozdzielczością kolorów.
Istnieją też urządzenia, które nie wymagają dostępnego promieniowania termicznego, lecz zamiast tego używają aktywnego oświetlenia. Źródło światła podczerwonego oświetla obserwowaną scenę w taki sam sposób, jak standardowa lampa fotograficzna – kamera do obrazowania termicznego staje się noktowizorem. Ta metoda jest używana jest np. podczas akcji antyterrorystycznych w ciemnych pomieszczeniach. Światło podczerwone pozostaje niewidoczne dla celów.

Optyka w ruchu napędzanym

Niezależnie od stosowanej metody, fale elektromagnetyczne muszą zostać zgrupowane i doprowadzone do czujnika w celu pomiaru i obrazowania. Działa to tak samo jak tradycyjna fotografia w świetle widzialnym. Używane są te same elementy optyczne: soczewki są przesuwane w celu ustawienia ostrości i powiększania, przysłony są regulowane, filtry są ustawiane, a migawki uruchamiane.

W przypadku szeroko stosowanego bolometru piksele termiczne muszą być ponownie kalibrowane w krótkich interwałach, aby punkty o tej samej temperaturze miały taką samą jasność na obrazie. W tym celu większość urządzeń ma czarne migawki, które są automatycznie ustawiane przed czujnikiem w celu kalibracji wszystkich pikseli do tej samej wartości. Im szybsza migawka, tym krótszy czas, w którym niemożliwe jest wykonanie pomiaru.

Aby umożliwić zmianę ostrości i powiększanie, urządzenia optyczne często wyposażone są w miniaturowe silniki DC z komutacją z metali szlachetnych z serii 1524 ... SR. Osiągają one ekstremalnie wysokie wartości wydajności przy minimalnych wymogach dotyczących przestrzeni. Silniki o średnicy 8...10 mm używane są w sytuacjach, gdy silnik musi zmieścić się w minisoczewkach. Na przykład silniki krokowe typu DM0620 (rysunek 4) w połączeniu z wbudowaną śrubą pociągową są idealne do przesuwania filtrów i migawek.

Rysunek 4. Miniaturowe silniki umożliwiają budowę kompaktowych i funkcjonalnych urządzeń do obrazowania termicznego

FAULHABER oferuje też szeroką ofertę silników oraz pasujących do nich przekładni, enkoderów i innych akcesoriów. Zapewniają one optymalne rozwiązanie dla niemal każdego zastosowania. Elementy napędu można znaleźć w wielu tradycyjnych urządzeniach optycznych, gdzie sprawdzają się od wielu lat. Dotyczy to również automatycznego, napędzanego wyrównywania aparatów na stabilizatorach. Kompaktowe silniki krokowe FAULHABER o niskich wibracjach nadają się szczególnie dobrze do takich zastosowań.

Więcej informacji:
 
FAULHABER Polska sp. z o.o., 60-204 Poznań, ul. Górki 7, tel. +48 61 278 72 53, info@faulhaber.pl, www.faulhaber.com
Artykuł ukazał się w
Elektronika Praktyczna
maj 2021
DO POBRANIA
Pobierz PDF Download icon
Elektronika Praktyczna Plus lipiec - grudzień 2012

Elektronika Praktyczna Plus

Monograficzne wydania specjalne

Elektronik styczeń 2025

Elektronik

Magazyn elektroniki profesjonalnej

Raspberry Pi 2015

Raspberry Pi

Wykorzystaj wszystkie możliwości wyjątkowego minikomputera

Świat Radio styczeń - luty 2025

Świat Radio

Magazyn krótkofalowców i amatorów CB

Automatyka, Podzespoły, Aplikacje listopad - grudzień 2024

Automatyka, Podzespoły, Aplikacje

Technika i rynek systemów automatyki

Elektronika Praktyczna styczeń 2025

Elektronika Praktyczna

Międzynarodowy magazyn elektroników konstruktorów

Elektronika dla Wszystkich styczeń 2025

Elektronika dla Wszystkich

Interesująca elektronika dla pasjonatów